Stagnation-Point Radiative Heat Fluxes in Neptune Aero-capture

Chul Park Korea Advanced Institute of Science and Technology Daejeon, Korea

- •Background
- •Review of a new ionization model for H+He.
- •Application to Neptune entry.
- •Concluding remarks.

Background – 1 chronology

- Neptune and Triton are closest to Kuiper Belt, which may hold clues to extraterrestrial origin of life.
- Would like to insert an orbiter around Neptune that crosses the orbit of Triton.
- Several NASA proposals to explore Neptune and Triton.
- Minimum-energy trajectory takes too long. Fast mission using swing-by needed.
- Triton rotates retrograde. Results in 30 km/s entry speed. Aero-capture is needed.
- Neptune's atmosphere: 81%H₂, 18.5%He, 1.5%CH₄.
- Hollis et al (2004) examined the heating rates, predicted q_{conv} =4 kW/cm², q_{rad} =1 kW/cm²(part of q_{rad} converted to q_{conv})

Background – 2 Scientific issues

- Ionization rate of H will affect radiation. Ionization rate of H is dictated mostly by the birth of the first electrons by H+H collisions. The birth of first electrons is influenced by absorption of Lyman-a radiation.
- Ionization rate in H+He mixture was measured by Leibowitz (1973) and Livingston and Poon (1976) in a shock tube, from which the H+H ionization cross section can be determined. There is a factor of 4 difference in rates between the two results.
- Bogdanoff and Park (2002) tried to reproduce the earlier data in a shock tube, and failed.
- Park (2010) analyzed Livingston-Poon data, accounting for Lyman-a absorption, and developed a new reaction model for H+He mixture (H+H and H+He ionization).
- H₂ dissociation and vibrational-rotational excitation problem solved by Kim et al(2009).
- Shock tube experiment of Hyun et al(2009) shows that H hitting carbon surface does not produce CH.
- Present work applies these new model to calculate the stagnation-point radiative heat flux at the edge of boundary layer. (The edge value is the controlling value.)

Review of Park's new H+He ionization model (2010) based on Livingston and Poon's shock tube data

- Reproduces the equilibrium distances and peak electron densities in H+He mixture obtained by Livingston and Poon (1976) in a shock tube. (agreement imperfect)
- Note that the peak electron density is higher than the Rankine-Hugoniot equilibrium value.

Reason for discrepancy between Leibowitz (1973) and Livingston and Poon (1976) is explained

•The irradiation from driver gas in Leibowitz's experiment caused four times faster ionization.

Radiation spectrum

• Significant contribution for H₂ B-X and C-X in vacuum ultra-violet.

Application to Neptune Entry assuming a 1-D constant area channel flow of 1 cm long

• Radiative heat transfer rate is about 1.6 times higher than the values obtained by Hollis et al (2002). Heat load is 1/5 of that to Galileo Probe.

Concluding Remarks

- A new ionization model was developed for H+He mixture.
- The model leads to radiative heat transfer rates higher than those by earlier model.
- The role of methane (carbon) on radiation needs to be investigated.
- Shock tube experiment with H+He+CH₄ mixture is desirable, but how to do is not known.
- CFD needs to be done. Calculation of Lyman-a absorption will be a challenge.
- Overall aerothermodynamics of Neptune entry is very difficult, primarily because of lack of experiment.